Podcast Reference
Here we handle generation of podcasts from texts.
Podcaster
Source code in biochatter/podcast.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
__init__(document, model_name='gpt-3.5-turbo')
_process_section(text, summarise=False)
Processes a section of the document. Summarises if summarise is True, otherwise just makes the text more listenable.
text (str): text to summarise
summarise (bool): whether to summarise the text
str: summarised text
Source code in biochatter/podcast.py
_process_sections(sentences, characters_per_paragraph)
Processes sections of the document. Concatenates sentences until characters_per_paragraph is reached, removing each sentence from the list as it is added to the section to be processed.
sentences (list): list of sentences to summarise
characters_per_paragraph (int): number of characters per paragraph
list: list of processed sections
Source code in biochatter/podcast.py
_split_text(text)
Splits consecutive text into sentences.
_title_and_authors(text)
Extracts title and authors from document.
text (str): text to extract title and authors from
str: title and authors
Source code in biochatter/podcast.py
generate_podcast(characters_per_paragraph)
Podcasts the document.
Todo:
- chain of density prompting for variable summary length
Source code in biochatter/podcast.py
podcast_to_file(path, model='gtts', voice='alloy')
Uses text-to-speech to generate audio for the summarised paper podcast.
path (str): path to save audio file to
model (str): model to use for text-to-speech. Currently supported:
'gtts' (Google Text-to-Speech, free),
'tts-1' (OpenAI API, paid, prioritises speed),
'tts-1-hd' (OpenAI API, paid, prioritises quality)
voice (str): voice to use for text-to-speech. See OpenAI API
documentation for available voices.
Source code in biochatter/podcast.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
podcast_to_text()
Returns the summarised paper podcast as text.