Reflexion Agent Reference
Here we handle the implementation of a LangGraph-based multi-agent system for reflexion on a user-defined task.
The base module
ReflexionAgent
Bases: ABC
LLM agent reflexion framework:
start -> draft -> execute tool -> revise -> evaluation -> end /|\ | ---------------------------
Source code in biochatter/langgraph_agent_base.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
|
__init__(conversation_factory, max_steps=20, agent_logger=ReflexionAgentLogger())
Parameters:
Name | Type | Description | Default |
---|---|---|---|
conversation_factory
|
Callable
|
the callback to create Conversation |
required |
max_steps
|
int
|
max steps for reflextion loop |
20
|
Source code in biochatter/langgraph_agent_base.py
execute(question, prompt=None)
Execute ReflexionAgent. Wrapper for building a graph and executing it, returning the final answer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
question
|
str
|
user question |
required |
prompt
|
str
|
user prompt |
None
|
Returns:
Type | Description |
---|---|
ReflexionAgentResult
|
answer str | None: If it executes successfully, an answer to the question will be returned, otherwise, it returns None |
Source code in biochatter/langgraph_agent_base.py
ReflexionAgentLogger
Source code in biochatter/langgraph_agent_base.py
log_final_result(final_result)
log_step_message(step, node_name, output)
log step message Args: step int: step index output BaseMessage: step message
ResponderWithRetries
Raise request to LLM with 3 retries
Source code in biochatter/langgraph_agent_base.py
__init__(runnable, validator)
respond(state)
Invoke LLM agent, this function will be called by LangGraph Args: state List[BaseMessage]: message history
Source code in biochatter/langgraph_agent_base.py
The KG-based reflexion agent
GenerateQuery
Bases: BaseModel
Generate the query.
Source code in biochatter/kg_langgraph_agent.py
KGQueryReflexionAgent
Bases: ReflexionAgent
Source code in biochatter/kg_langgraph_agent.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
__init__(conversation_factory, connection_args, query_lang='Cypher', max_steps=20)
LLM agent reflexion framework:
start -> draft -> execute tool -> revise -> evaluation -> end /|\ | ---------------------------
Adapts base class to build and refine a knowledge graph query, default language Cypher. Currently hardcoded to connect to Neo4j for the KG query implementation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
conversation_factory
|
Callable
|
function to return the Conversation to use for the LLM connection |
required |
connection_args
|
dict[str, str]
|
connection arguments for connecting to the database |
required |
query_lang
|
Optional[str]
|
graph query language to use |
'Cypher'
|
max_steps
|
Optional[int]
|
the maximum number of steps to execute in the graph |
20
|
Source code in biochatter/kg_langgraph_agent.py
ReviseQuery
Bases: GenerateQuery
Revise your previous query according to your question.