Vectorstore Agent Reference
Here we handle the application of vectorstore services to retrieval-augmented generation tasks by embedding documents and connections/management of vectorstore services and semantic search.
Vectorstore Implementation
DocumentEmbedder
Source code in biochatter/vectorstore.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
__init__(used=False, online=False, chunk_size=1000, chunk_overlap=0, split_by_characters=True, separators=None, n_results=3, model='text-embedding-ada-002', vector_db_vendor=None, connection_args=None, embedding_collection_name=None, metadata_collection_name=None, api_key=None, is_azure=False, azure_deployment=None, azure_endpoint=None, base_url=None, embeddings=None, documentids_workspace=None)
Class that handles the retrieval-augmented generation (RAG) functionality of BioChatter. It splits text into chunks, embeds them, and stores them in a vector database. It can then be used to do similarity search on the database.
Args:
----
used (bool, optional): whether RAG has been used (frontend setting).
Defaults to False.
online (bool, optional): whether we are running the frontend online.
Defaults to False.
chunk_size (int, optional): size of chunks to split text into.
Defaults to 1000.
chunk_overlap (int, optional): overlap between chunks. Defaults to 0.
split_by_characters (bool, optional): whether to split by characters
or tokens. Defaults to True.
separators (Optional[list], optional): list of separators to use when
splitting by characters. Defaults to [" ", ",", "
"].
n_results (int, optional): number of results to return from
similarity search. Defaults to 3.
model (Optional[str], optional): name of model to use for embeddings.
Defaults to 'text-embedding-ada-002'.
vector_db_vendor (Optional[str], optional): name of vector database
to use. Defaults to Milvus.
connection_args (Optional[dict], optional): arguments to pass to
vector database connection. Defaults to None.
api_key (Optional[str], optional): OpenAI API key. Defaults to None.
base_url (Optional[str], optional): base url of OpenAI API.
embeddings (Optional[OpenAIEmbeddings | XinferenceEmbeddings],
optional): Embeddings object to use. Defaults to OpenAI.
documentids_workspace (Optional[List[str]], optional): a list of document IDs
that defines the scope within which rag operations (remove, similarity search,
and get all) occur. Defaults to None, which means the operations will be
performed across all documents in the database.
is_azure (Optional[bool], optional): if we are using Azure
azure_deployment (Optional[str], optional): Azure embeddings model deployment,
should work with azure_endpoint when is_azure is True
azure_endpoint (Optional[str], optional): Azure endpoint, should work with
azure_deployment when is_azure is True
Source code in biochatter/vectorstore.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
save_document(doc)
This function saves document to the vector database Args: doc List[Document]: document content, read with DocumentReader load_document(), or document_from_pdf(), document_from_txt()
Returns
str: document id, which can be used to remove an uploaded document with remove_document()
Source code in biochatter/vectorstore.py
DocumentReader
Source code in biochatter/vectorstore.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
|
document_from_pdf(pdf)
Receive a byte representation of a pdf file and return a list of Documents with metadata.
pdf (bytes): byte representation of pdf file
List[Document]: list of documents
Source code in biochatter/vectorstore.py
document_from_txt(txt)
Receive a byte representation of a txt file and return a list of Documents with metadata.
txt (bytes): byte representation of txt file
List[Document]: list of documents
Source code in biochatter/vectorstore.py
load_document(path)
Loads a document from a path; accepts txt and pdf files. Txt files are loaded as-is, pdf files are converted to text using fitz.
path (str): path to document
List[Document]: list of documents
Source code in biochatter/vectorstore.py
OllamaDocumentEmbedder
Bases: DocumentEmbedder
Source code in biochatter/vectorstore.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
__init__(used=False, chunk_size=1000, chunk_overlap=0, split_by_characters=True, separators=None, n_results=3, model='nomic-embed-text', vector_db_vendor=None, connection_args=None, embedding_collection_name=None, metadata_collection_name=None, api_key='none', base_url=None, documentids_workspace=None)
Extension of the DocumentEmbedder class that uses Ollama for embeddings.
used (bool, optional): whether RAG has been used (frontend setting).
chunk_size (int, optional): size of chunks to split text into.
chunk_overlap (int, optional): overlap between chunks.
split_by_characters (bool, optional): whether to split by characters
or tokens.
separators (Optional[list], optional): list of separators to use when
splitting by characters.
n_results (int, optional): number of results to return from
similarity search.
model (Optional[str], optional): name of model to use for embeddings.
Can be "auto" to use the first available model.
vector_db_vendor (Optional[str], optional): name of vector database
to use.
connection_args (Optional[dict], optional): arguments to pass to
vector database connection.
embedding_collection_name (Optional[str], optional): name of
collection to store embeddings in.
metadata_collection_name (Optional[str], optional): name of
collection to store metadata in.
api_key (Optional[str], optional): Xinference API key.
base_url (Optional[str], optional): base url of Xinference API.
documentids_workspace (Optional[List[str]], optional): a list of document IDs
that defines the scope within which rag operations (remove, similarity search,
and get all) occur. Defaults to None, which means the operations will be
performed across all documents in the database.
Source code in biochatter/vectorstore.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
XinferenceDocumentEmbedder
Bases: DocumentEmbedder
Source code in biochatter/vectorstore.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
__init__(used=False, chunk_size=1000, chunk_overlap=0, split_by_characters=True, separators=None, n_results=3, model='auto', vector_db_vendor=None, connection_args=None, embedding_collection_name=None, metadata_collection_name=None, api_key='none', base_url=None, documentids_workspace=None)
Extension of the DocumentEmbedder class that uses Xinference for embeddings.
used (bool, optional): whether RAG has been used (frontend setting).
chunk_size (int, optional): size of chunks to split text into.
chunk_overlap (int, optional): overlap between chunks.
split_by_characters (bool, optional): whether to split by characters
or tokens.
separators (Optional[list], optional): list of separators to use when
splitting by characters.
n_results (int, optional): number of results to return from
similarity search.
model (Optional[str], optional): name of model to use for embeddings.
Can be "auto" to use the first available model.
vector_db_vendor (Optional[str], optional): name of vector database
to use.
connection_args (Optional[dict], optional): arguments to pass to
vector database connection.
embedding_collection_name (Optional[str], optional): name of
collection to store embeddings in.
metadata_collection_name (Optional[str], optional): name of
collection to store metadata in.
api_key (Optional[str], optional): Xinference API key.
base_url (Optional[str], optional): base url of Xinference API.
documentids_workspace (Optional[List[str]], optional): a list of document IDs
that defines the scope within which rag operations (remove, similarity search,
and get all) occur. Defaults to None, which means the operations will be
performed across all documents in the database.
Source code in biochatter/vectorstore.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
list_models_by_type(type)
Return all models of a certain type that are currently available on the Xinference server.
type (str): type of model to list (e.g. "embedding", "chat")
List[str]: list of model names
Source code in biochatter/vectorstore.py
load_models()
Get all models that are currently available on the Xinference server and
write them to self.models
.
Source code in biochatter/vectorstore.py
Vectorstore Agent
VectorDatabaseAgentMilvus
The VectorDatabaseAgentMilvus class manages vector databases in a connected
host database. It manages an embedding collection
_col_embeddings:langchain.vectorstores.Milvus
, which is the main
information on the embedded text fragments and the basis for similarity
search, and a metadata collection _col_metadata:pymilvus.Collection
, which
stores the metadata of the embedded text fragments. A typical workflow
includes the following operations:
- connect to a host using
connect()
- get all documents in the active database using
get_all_documents()
- save a number of fragments, usually from a specific document, using
store_embeddings()
- do similarity search among all fragments of the currently active database
using
similarity_search()
- remove a document from the currently active database using
remove_document()
Source code in biochatter/vectorstore_agent.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
|
__init__(embedding_func, connection_args=None, embedding_collection_name=None, metadata_collection_name=None)
embedding_func OpenAIEmbeddings: Function used to embed the text
connection_args Optional dict: args to connect Vector Database
embedding_collection_name Optional str: exposed for test
metadata_collection_name Optional str: exposed for test
Source code in biochatter/vectorstore_agent.py
connect()
Connect to a host and read two document collections (the default names
are DocumentEmbeddings
and DocumentMetadata
) in the currently active
database (default database name is default
); if those document
collections don't exist, create the two collections.
Source code in biochatter/vectorstore_agent.py
get_all_documents(doc_ids=None)
Get all non-deleted documents from the currently active database.
doc_ids (List[str] optional): the list of document ids, defines
documents scope within which the operation of obtaining all
documents occurs
List[Dict]: the metadata of all non-deleted documents in the form
[{{id}, {author}, {source}, ...}]
Source code in biochatter/vectorstore_agent.py
remove_document(doc_id, doc_ids=None)
Remove the document include meta data and its embeddings.
doc_id (str): the document to be deleted
doc_ids (Optional[list[str]]): the list of document ids, defines
documents scope within which remove operation occurs.
bool: True if the document is deleted, False otherwise
Source code in biochatter/vectorstore_agent.py
similarity_search(query, k=3, doc_ids=None)
Perform similarity search insider the currently active database according to the input query.
This method will: 1. get all non-deleted meta_id and build to search expression for the currently active embedding collection 2. do similarity search in the embedding collection 3. combine metadata and embeddings
query (str): query string
k (int): the number of results to return
doc_ids (Optional[list[str]]): the list of document ids, do
similarity search across the specified documents
List[Document]: search results
Source code in biochatter/vectorstore_agent.py
store_embeddings(documents)
Store documents in the currently active database.
documents (List[Documents]): documents array, usually from
DocumentReader.load_document, DocumentReader.document_from_pdf,
DocumentReader.document_from_txt
str: document id
Source code in biochatter/vectorstore_agent.py
align_embeddings(docs, meta_id)
Ensure that the metadata id is present in each document.
docs (List[Document]): List of documents
meta_id (int): Metadata id to assign to the documents
List[Document]: List of documents, with each document having a metadata
id.
Source code in biochatter/vectorstore_agent.py
align_metadata(metadata, isDeleted=False)
Ensure that specific metadata fields are present; if not provided, fill with "unknown". Also, add a random vector to each metadata item to simulate an embedding.
metadata (List[Dict]): List of metadata items
isDeleted (Optional[bool], optional): Whether the document is deleted.
Defaults to False.
List[List]: List of metadata items, with each item being a list of
metadata fields.